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Finite-amplitude method for charge-changing transitions in axially deformed nuclei
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We describe and apply a version of the finite amplitude method for obtaining the charge-changing nuclear
response in the quasiparticle random-phase approximation. The method is suitable for calculating strength
functions and beta-decay rates, both allowed and forbidden, in axially-deformed open-shell nuclei. We
demonstrate the speed and versatility of the code through a preliminary examination of the effects of tensor terms
in Skyrme functionals on beta decay in a set of spherical and deformed open-shell nuclei. Like the isoscalar
pairing interaction, the tensor terms systematically increase allowed beta-decay rates. This finding generalizes
previous work in semimagic nuclei and points to the need for a comprehensive study of time-odd terms in
nuclear density functionals.
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I. INTRODUCTION

Beta decay is an important process at the intersection
of nuclear physics, astrophysics, and particle physics. The
rapid neutron-capture process (r process) proceeds through
neutron-rich nuclei, the beta-decay rates for which determine
final abundance distributions. The significance of the reactor
neutrino anomaly for exotic new neutrino physics depends on
forbidden beta-decay rates in neutron-rich fission products [1].
In both these cases, the important rates are difficult or impos-
sible to measure; we need to be able to calculate them instead.

The random-phase approximation (RPA) and its generaliza-
tion, the quasiparticle random-phase approximation (QRPA),
nowadays typically used in conjunction with Skyrme energy-
density functionals (EDFs), are established tools for treating
nuclear excitations. The matrix version of the charge-changing
(or “pn”) Skyrme QRPA has been applied with some success
in spherical nuclei. When the rotational symmetry of the mean
field is broken, however, the dimension of the mean-field
two-quasiparticle basis increases by orders of magnitude and
the QRPA matrix becomes too large to fit in the main memory
of a typical computer without aggressive truncation. Even then,
supercomputing is needed to solve the equations. We have
constructed a deformed matrix Skyrme pnQRPA program [2]
from the code reported in Ref. [3] but cannot use it in
reasonable amounts of computing time.

The finite amplitude method (FAM) is a much more efficient
scheme for finding the linear response. Reference [4] first
proposed the method and Ref. [5] quickly applied it to obtain
the RPA response in spherical and deformed nuclei. Refer-
ence [6] generalized the approach to the QRPA, and Ref. [7]
applied the generalization to monopole transitions. In this
article, we further extend the FAM to charge-changing QRPA
transitions of arbitrary intrinsic angular momentum projection
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K in deformed nuclei. We call the resulting approach the
Skyrme proton-neutron finite amplitude method (pnFAM).

To illustrate the method, we examine the effects of Skyrme’s
tensor terms on beta-decay rates. Minato and Bai [8] observed
that a tensor interaction can reduce beta-decay half-lives of
magic and semimagic nuclei considerably, bringing them into
closer accord with experiment. If a similar reduction takes
place in deformed nuclei, it might make it impossible to include
an isoscalar pairing interaction without underpredicting half-
lives. On the other hand, it might instead allow a better-behaved
isoscalar pairing interaction, one that depends less on mass
than those in use today. After a preliminary pnFAM analysis
of the effects of tensor interaction in both semimagic and
deformed nuclei, we assess the situation here. This work will
serve as a stepping stone towards r-process studies in the
rare-earth region, evaluation of neutrino-capture rates, and a
more data-rich determination of the time-reversal (T) odd parts
of energy-density functionals.

The rest of the article is organized as follows: Section II
lays out the form of our Skyrme functionals and discusses
the application of the FAM to beta decay, Sec. III presents
our implementation and consistency checks, and Sec. IV uses
the pnFAM to study the tensor interaction in a small set of
open-shell and deformed nuclei. Section V is a conclusion.

II. THEORETICAL BACKGROUND

A. Skyrme energy-density functional

In the particle-hole channel we use the standard general
Skyrme EDF, the details of which may be found in many
places, e.g., in Refs. [9,10]. In the notation of Ref. [9], the
EDF takes the form

E =
∑
t=0,1

+t∑
t3=−t

∫
dr

(Heven
t t3

(r) + Hodd
t t3

(r)
)
, (1)

where

Heven
t t3

(r) ≡ C
ρ
t [ρ00]ρ2

t t3
+ C

�ρ
t ρtt3∇2ρtt3

+Cτ
t ρtt3τtt3 + CJ

t J2
t t3

+ C
ρ∇J
t ρtt3∇ · Jt t3 (2)
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is bilinear in local time-even densities, and

Hodd
t t3

(r) ≡ Cs
t [ρ00]s2

t t3
+ C�s

t st t3 · ∇2st t3 + C
j
t j2

t t3

+CT
t st t3 · Tt t3 + C

s∇j
t st t3 · ∇ × jt t3

+CF
t st t3 · Ft t3 + C∇s

t (∇ · st t3 )2 (3)

is bilinear in time-odd local densities. Only the coupling
constants C

ρ
t [ρ00] and Cs

t [ρ00] are allowed to be density-
dependent themselves, viz.,

C
ρ
t [ρ00] = C

ρ
t,0 + C

ρ
t,ρρ

σρ

00 ,
(4)

Cs
t [ρ00] = Cs

t,0 + Cs
t,ρρ

σs

00,

and even they depend only on the total density

ρ00(r) =
∑

σ

∑
τ

ρ̂(rστ,rστ ) = ρn(r) + ρp(r). (5)

Our implementation of the pnFAM, through a code we
call PNFAM, is self-consistent and so must be preceded by
a Hartree-Fock-Bogoliubov (HFB) calculation, for which we
use the popular code HFBTHO [11,12]. Because the pnFAM
treats only charge-changing transitions and HFBTHO does not
allow proton-neutron mixing, our results depend only on
charge-changing densities [those with isospin indices (t,t3) =
(1,±1)]; the usual Coulomb and kinetic contributions to the
total energy in Eq. (1) are not necessary.

In the particle-particle (pairing) channel, we use a density-
dependent interaction of the form

Vpp = (V0�̂T =0 + V1�̂T =1)

(
1 − α

ρ00(r)

ρc

)
δ(r), (6)

where ρc = 0.16 fm−3 is the saturation density of nuclear
matter and α ∈ [0,1] controls the density-dependence. This
form is similar to that allowed by HFBTHO. The T = 0
pairing term, however, has no effect in the HFB calculation
as long as explicit proton-neutron mixing is forbidden. The
pairing strength V0 is thus unconstrained by the mean field
and becomes a free parameter in our subsequent pnFAM
calculation. On the other hand the T = 1 pairing, though
important in the HFB calculation, has no dynamical effect
on Gamow-Teller transitions. It does play a role for other
multipoles, however, and we set its strength V1 to the average of
the HFB proton and neutron pairing strengths (which HFBTHO

allows to be different), that is V1 = (Vp + Vn)/2.
Although the coupling constants of Eqs. (2) and (3)

can be derived from the parameters that specify a Skyrme
“interaction” (the t and x parameters) [10], there need be no
underlying interaction and the couplings of the time-odd part
of the functional need not be connected with those of the
time-even part. Most Skyrme EDFs are fitted to ground-state
properties of spherical or axially-symmetric even-even nuclei,
which are independent of the time-odd functional. Even if
properties of odd nuclei are included, time-odd densities and
currents appear not to contribute very much [13]. As a result,
up to relations that follow from gauge invariance, the time-odd
couplings in the EDF picture are undetermined by such fits. In
recent parametrizations, e.g., the UNEDF [14–16] and SV [17]
series of functionals, that fact is made explicit: the time-odd

coupling constants are either neglected completely or are
constrained solely by gauge invariance.

Some time-odd couplings can be profitably fit to the
energies and strengths of Gamow-Teller resonances; see, e.g.,
Ref. [9] or Ref. [18]. Here we will sometimes use the simple
prescriptions of Ref. [9]. The ability to treat charge-changing
resonances in deformed nuclei via the pnFAM should soon
open the door to a better determination of the T-odd functional.

B. The finite amplitude method

Reference [6] derives a form of the FAM that corresponds
to the like-particle QRPA. The formulation is general enough,
however, to cover the charge-changing case as well. In the
following we discuss the special features of the FAM that
follow from charge changing, i.e., from choosing an external
field that transforms neutrons into protons (e.g., for β− decay).

Charge-changing transitions are generated by a weak
external field F (t), with (complex) angular frequency ω, of
the form

F (t) = η(Fe−iωt + F †eiωt ), (7)

where η is a small real parameter and F is a one-body operator
that could depend on ω but in our application does not.
Transformed to the quasiparticle basis, it has the form

F =
∑
(α,β)

(
F 20

αβa†
αa

†
β + F 02

αβaβaα

) + · · · , (8)

where the ellipses refer to terms of the form a†
αaβ that do

not contribute to the linear response. The summation runs
over every pair of quasiparticle states in the basis, avoiding
double-counting.

A one-body β− transition operator (Fermi, Gamow-Teller,
or forbidden) can be written in a single-particle basis as

F =
∑
pn

fpnc
†
pcn, (9)

where the index p runs over proton states and the index n
over neutron states. The fpn are the single-particle matrix
elements of the transition operator. Here, unlike in the
charge-conserving FAM, F is non-Hermitian. Without proton-
neutron mixing in the static HFB solution, the Bogoliubov
transformation yields

F 20
πν =

∑
pn

U ∗
pπfpnV

∗
nν, F 20

νπ = 0, (10a)

and

F 02
πν = −

∑
pn

VpπfpnUnν, F 02
νπ = 0, (10b)

where π and ν label the proton and neutron quasiparticle
states, and U and V are the usual Bogoliubov transformation
matrices [19].

The weak external field F induces weak time-dependent
oscillations in the quasiparticle annihilation operators (e.g.,
for neutrons),

δaν = η
∑
π

a†
π [Xπν(ω)e−iωt + Y ∗

πν(ω)eiωt ]. (11)
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These oscillations in turn lead to oscillations in the charge-
changing density matrix elements ρpn and ρnp, the charge-
changing pairing tensors κpn and κ∗

pn, and the resulting energy
functional E[ρ,κ,κ∗]. The single-particle Hamiltonian h and
pairing potential � likewise acquire time-dependent pieces
through the relations

hab = ∂E
∂ρba

, �ab = ∂E
∂κ∗

ab

, (12)

where a is a proton index and b a neutron index, or vice versa.
The oscillations in all quantities occur with the same

frequency ω, and the time dependence, which is contained
only in exponentials like those in Eq. (7), can be factored
out and removed. The FAM then amounts to solving the
small-amplitude limit of the time-dependent HFB equation
(with the time dependence factored out). The reason the
procedure is so efficient is the numerical computation of the
derivatives of h and � in the direction of the perturbation,
i.e., with respect to η. In our pnFAM the differentiation is
somewhat easier than in the like-particle case because the
charge-changing parts of ρ and κ vanish at the HFB minimum
(since our HFB does not mix protons with neutrons.) That
restriction, together with the linear dependence of h and �
on the charge-changing densities for all published Skyrme
functionals, means that the pnFAM numerical derivatives are
independent of the parameter η. In fact, our code does not
reference η at all and we do not need to worry, as did the authors
of Ref. [7], about choosing η small enough so that terms
of O(η2) are negligible, but large enough to avoid round-off
errors.

When all is said and done, the pnFAM equations for the
linear response become

(Eπ + Eν − ω)Xπν(F ; ω) + δH 20
πν(F ; ω) = −F 20

πν,
(13)

(Eπ + Eν + ω)Yπν(F ; ω) + δH 02
πν(F ; ω) = −F 02

πν,

where the E’s are the HFB quasiparticle energies and δH 20 and
δH 02 are the pieces of the frequency-dependent HFB Hamil-
tonian matrix, expressible in terms of h and �, that multiply
the quasiparticle pair-creation and annihilation operators, as
in Eq. (8) [6]. One can go on from Eqs. (13) to derive the
traditional matrix-QRPA equations by expanding δH 20 and
δH 02 in X and Y (on which H depends implicitly via the
densities) and taking the limit of vanishing external field.
But the point of the FAM is to solve the nonlinear system
of equations (13) instead of constructing the traditional QRPA
A and B matrices.

After solving Eqs. (13) for the amplitudes Xπν(F ; ω) and
Yπν(F ; ω), one can compute the strength distribution for the
operator F :

dB(F,ω)

dω
= − 1

π
Im S(F ; ω), (14)

where

S(F ; ω) =
∑
πν

[
F 20∗

πν Xπν(F ; ω) + F 02∗
πν Yπν(F ; ω)

]

= −
∑

n

( |〈n|F |0〉|2
�n − ω

− |〈n|F †|0〉|2
�n + ω

)
. (15)

The last form, combined with Eq. (14) for complex frequency
ω = � + iγ , leads to

dB

dω
→ γ

2π

∑
n

( |〈n|F |0〉|2
(�n − �)2 + γ 2

− |〈n|F †|0〉|2
(�n + �)2 + γ 2

)
,

(16)

which shows that the FAM transition strength a distance γ
above the real axis is just the QRPA strength function smeared
with a Lorentzian of width γ . The last three equations imply
the symmetry

S(F ; ω) = −S∗(F ; ω∗). (17)

To evaluate nonunique forbidden decay rates we will need
to take into account the interference between distinct transition
operators, called F and G here for simplicity. Such terms have
the form

χ (F,G; ω) =
∑

n

( 〈n|F †|0〉〈0|G|n〉
�n + ω

− 〈n|F |0〉〈0|G†|n〉
�n − ω

)
.

(18)

We compute them by using, e.g., the operator F to generate
the response and then calculating the effect on the quantity
represented by G:

χ (F,G; ω) =
∑
πν

[
G20∗

πν Xπν(F ; ω) + G02∗
πν Yπν(F ; ω)

]
. (19)

In deformed nuclei, all the results above are in the
intrinsic frame, where angular momentum is not conserved.
The symmetry must be restored, at least approximately, and
the crudest way to do so is by treating the intrinsic state like the
particle in the particle-rotor model [19]. In that picture every
intrinsic state corresponds to the lowest state in a rotational
band, and has a rotational energy

Elab(J ) = Eint + J (J + 1)

2I , (20)

where I is the moment of inertia of the nucleus. We use the
HFB version of the Beliaev formula [19] (see Ref. [20] for
details) to approximate I:

I =
∑
αβ

|(U †JxV
∗ − V †JxU

∗)αβ |2
Eα + Eβ

. (21)

Here α and β label quasiparticle states of the same particle
type (proton or neutron). The energy shifts are typically only
tens of keV, but their effects in beta-decay rates are magnified
by the phase-space integrals and can be non-negligible (see
Sec. IV).

C. Beta-decay half-lives

In this work we consider both allowed and first-
forbidden beta decay. Expressions for the relevant impulse-
approximation operators were worked out some time ago,
e.g., in Refs. [21–23]. In this section we restrict ourselves
to allowed decay; the more complicated expressions for the
first-forbidden decay can be found in the Appendix.
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The total allowed decay rate is proportional to the sum of
individual transition strengths Bi to all energetically allowed
states i in the daughter nucleus, weighted by phase-space
integrals:

λ = ln 2

κ

∑
i

f (Ei)Bi, (22)

where the constant κ = (6147.0 ± 2.4) s comes from super-
allowed decay [24]. The phase-space integral, containing the
details of final-state lepton kinematics, is [21]

f (E0) =
∫ W0

1
dW p W (W0 − W )2L0F0(Z,W ), (23)

where Z is the charge of the daughter nucleus, W0 =
E0/(mec

2), W is the electron energy in units of electron mass,
p ≡ √

W 2 − 1 is the electron momentum, and F0(Z,W ) is one
of the (generalized) Fermi functions [21]

Fke
(Z,W ) = [ke(2ke − 1)!!]24ke (2pR)2(γke −ke)

× exp(πy)

∣∣�(
γke

+ iy
)∣∣2[

�
(
2γke

+ 1
)]2 . (24)

Here ke is related to the orbital angular momentum of the
emitted electron (see, e.g., Ref. [21] for the definition),
γke

= √
k2
e − (αZ)2, y = αZW/p, and R is the nuclear radius.

(The Primakoff-Rosen approximation to this expression [25] is
often used for computing allowed decay but we retain the more
general form, which also applies to forbidden beta decay.) The
Coulomb function L0 is

L0 ≈ 1
2 (1 + γ1). (25)

To use these expressions we need the energies in the final
nucleus with respect to the ground state of the initial nucleus.
We take our ground-state-to-ground-state Q value from the
approximation in Ref. [26],

Q = λn − λp + �Mn-H − Eg.s., (26)

where λp and λn are the proton and neutron Fermi energies
from the HFB solution, �Mn-H = 0.78227 MeV is the mass
difference between the neutron and hydrogen atom, and the
ground-state energy is taken to be the sum of the lowest proton
and neutron quasiparticle energies:

Eg.s. ≈ Ep,lowest + En,lowest. (27)

One virtue of the approximation in Eqs. (26) and (27) is that the
independent-quasiparticle approximation to the ground-state
energy cancels out in calculations of beta-decay lifetimes [26].
We use the approximation for the ground-state energy only
when studying strength distributions.

How do we actually evaluate lifetimes from the pnFAM
response? Equation (15) implies that the transition strength of
the operator F between the QRPA state with energy �n > 0
and the initial ground state is the residue of the function S(F )
at that energy,

Bn(F ) = |〈n|F |0〉|2 = Res[S(F ),�n], (28)

and Eq. (18) that the cross terms contributing to forbidden
decay rates are

〈n|F |0〉〈n|G|0〉∗ = Res[χ (F,G),�n]. (29)

The connection to residues allows us to represent beta-decay
rates as contour integrals of the pnFAM response in the
complex-frequency plane. The use of the FAM in conjunction
with contour integration was first proposed by Hinohara et al.,
for properties of individual bound states in Ref. [27] and for
sum rules in Ref. [28].

The representation is complicated a little by the fact that the
phase-space integrals (A10) are not analytic functions. But we
can replace the phase-space integrals with other functions that
are analytic, at least inside the contour, and that coincide with
the phase-space integrals at the poles of the strength function
that contribute to the integral. A high-order polynomial of the
form

fpoly(ω) =
N∑

n=0

an

(
ωmax − ω

mec2

)n

, (30)

fitted to the phase-space integral on the real axis, serves our
purpose. While we do not know the exact locations of the
poles of the strength function, we do know they lie on the
positive real axis (and that mirrored, unphysical poles lie on
the negative real axis).

With the polynomials, we can cast the equations for beta-
decay rates in a form that captures the contributions of all the
individual excited states in a contour that encloses them. The
Gamow-Teller part of the rate takes the form

λ1+ = ln 2

κ

∑
n

f (�n)B(GT)
n

≈ ln 2

κ

∑
n

fpoly(�n) Res[S(στ−),�n]

= ln 2

κ

∑
n

Res[fpolyS(στ−),�n]

= ln 2

κ

1

2πi

∮
C

dω fpoly(ω)S(στ−; ω), (31)

where the contour C encloses the same poles n that are initially
summed over. A practical choice for the contour is a circle,

ω(t) = ωmax

2
(1 + eit ), (32)

crossing the real axis at the origin and at the maximum energy

ωmax = Q + Eg.s. = λn − λp + �Mn-H. (33)

Figure 1 displays such a contour schematically. A circular
contour allows the use of the symmetry in Eq. (17) to halve
the number of pnFAM computations.

The analog of Eq. (31) for first-forbidden beta decay is
lengthy, and is presented in Appendix.

III. COMPUTATIONAL METHOD AND TESTS

As mentioned, our method begins with the use of the
code HFBTHO [11,12] to carry out an axially-deformed HFB
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Im ω

Re ω

C

Re [S(ω)f(ω)](a)

Im ω

Re ω

C

Im [S(ω)f(ω)](b)

FIG. 1. (Color online) Schematic representation of the integration contour C used to evaluate beta-decay rates. Only the poles of the
strength function below the endpoint energy ωmax contribute to the decay rate.

calculation. In our tests 16 harmonic oscillator shells are
enough to allow the low-energy strength functions to converge,
and we adopt that number for all half-life calculations.

Our contour integration requires a reasonably accurate
polynomial approximation to the Fermi integrals in Eq. (A10).
Figure 2 illustrates the quality of our fit to the allowed-decay
Fermi integral. In practice, a 10th-order polynomial of the
form (30) is more than sufficient. Another requirement is
that the integrands are smooth enough to allow numerical
quadrature. Figure 3 demonstrates that that is the case,
displaying a typical integrand as a function of the curve
parameter t in Eq. (32). The integrand is indeed smooth enough
to treat with conventional quadrature; we use the compound
Simpson’s 3/8 rule.

To test the PNFAM solver itself, we compare in Fig. 4
the pnFAM Gamow-Teller transition strength function in the
deformed isotope 22Ne with that produced by the traditional
matrix-QRPA code used in Ref. [2]. The matrix code uses the
Vanderbilt HFB solver [29] as its starting point. The slight

0 2 4 6 8 10

Maximum electron energy E0 (MeV)
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10−2

10−1

100
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f
( E

0
)

FIG. 2. (Color online) A 14th-order polynomial approximation
to the phase space integral f (E0) [Eq. (23)] for the beta decay of 148Ba.
The solid line is calculated with the exact Fermi function F0 [Eq. (24)]
and the points correspond to the polynomial approximation (30).

differences between the two strength functions are due to
similarly slight differences in the HFB solutions, which in
turn stem from different single-particle bases and truncation
schemes.

Finally, we turn to our prescription for the nuclear moment
of inertia. The approximation in Eq. (21) appears to yield
systematically higher values than does experiment, indicating
that almost none of the nuclei we examine below are as
rigid as the straightforward extension of the Beliaev formula
predicts. (We can implement a better approximation that
takes into account RPA correlations—the Thouless-Valatin
prescription [30]—once a like-particle FAM for general K
exists.) To assess the sensitivity of the Gamow-Teller half-life
to the rotational energy correction, we use the SkO functional
detailed in the next section to calculate half-lives in a few
test nuclei (Fig. 5). Although the strong dependence of the
phase-space integral on the energy released in the decay can
make a correction of the order of ten percent to the half-life, that
error is still at most comparable to the error in the calculated
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te

gr
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d
va

lu
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[1
05
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0 π/2 π 3π/2 2π
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dz
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S(z)fpoly(z)

FIG. 3. (Color online) The imaginary part of the integrand in
Eq. (31) that determines the K = 0 allowed decay rate of 142Ba, with
SkO and the tensor interaction. The integrand behaves well enough to
allow simple quadrature. The origin in the complex plane corresponds
to t = π (see text).
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FIG. 4. (Color online) Comparison of the pnFAM Gamow-Teller
strength function (points) in the deformed nucleus 22Ne with the same
function from the matrix QRPA (lines), smeared with a Lorentzian.
We use the Skyrme functional SkM* without including J2 terms or
pairing in the QRPA.

Q value. The accuracy of the generalized Beliaev moment
of inertia is therefore good enough for use with present-day
energy functionals.

IV. RESULTS AND DISCUSSION

Recent work [8,31–33] on semimagic nuclei in the spherical
QRPA indicates that tensor terms in Skyrme EDFs have
significant effects on beta-decay rates. Here we explore the
issue in open shell nuclei, both spherical and deformed.
We choose a set of isotopes for which both beta-decay
rates and the allowed contribution to those rates have been
measured. To make contact with Ref. [8] we use the same
underlying SkO functional, with the same additional tensor
piece (i.e., the interaction parameters te = 184.567 MeV fm5,
to = −108.567 MeV fm5, in the notation of Ref. [10]). We also
adopt the Ref. [8] procedure of breaking self-consistency by
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FIG. 5. (Color online) Partial Gamow-Teller half-lives in several
nuclei as a function of rotational energy correction, normalized to the
uncorrected values. The marker on each curve indicates the correction
obtained from Eq. (21).
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SkO functional and the SkO functional with an added tensor piece.
Isoscalar pairing is absent here.

omitting the central J 2 terms from the HFB calculation while
including them in the QRPA. Unlike Ref. [8], however, we
include the rotational energy correction and we approximate
the ground-state energy by the sum of the lowest proton and
neutron quasiparticle energies. These differences in procedure
have small effects on the Q value and half-life (via the phase
space available to emitted leptons). The last difference with
Ref. [8] is that we use the quenched value gA = 1.0 rather
than 1.27 for the axial-vector coupling constant.

We fit the constants in the isovector pairing interaction
Eq. (6) to a three-point interpolation of measured separation
energies. The SkO functional with this pairing interaction
reproduces Q values well, both with and without tensor terms.

Figure 6 shows the ratios of computed and experi-
mental partial Gamow-Teller half-lives for our set of nu-
clei. The tensor interaction systematically reduces the half-
lives, as in the magic and semi-magic nuclei examined
by Ref. [8]. In our spherical nuclei, with or without open
shells, the agreement with experiment improves dramatically.
In the deformed isotopes, however, the half-lives with SkO tend
to be quite low even without the tensor terms, which actually
make the half-lives too short. The situation is thus more
complicated than it seems when restricted to spherical systems.

Figure 7 shows the effects of the tensor interaction in
more detail, in four isotopes. The new terms pull Gamow-
Teller strength down in energy in each case, and smear the
resonances. The movement of strength to lower energies
explains the decrease in half-life; the lower-energy strength
means more phase space for leptons and an increased rate.

How many of the features in Figs. 6 and 7 are due
to the violation of self-consistency between the HFB and
QRPA calculations? How many are due to the limited set of
nuclei that we examine? To the restriction to allowed decay?
To the simple addition of a tensor interaction without any
attempt to refit data? We cannot address these questions fully
here, but can make a start. We now investigate a slightly
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FIG. 7. (Color online) Gamow-Teller strength functions in several isotopes. The solid (blue) lines represent the strength without tensor
terms and the dashed (red) lines the strength with those terms.

larger set of nuclei (that overlaps our original set) with a
fully self-consistent calculation that includes first-forbidden
contributions to the rate. We choose as a starting point the
functional SkO′ [34], which reproduces experimental Q values
as well as SkO and does a good job on beta-decay rates
in semi-magic isotopes [26]. We adjust the time-odd part of
the functional, setting C�s

1 = 0 to avoid instability (observed,
e.g., in Ref. [13]) and Cs

1 = 159 MeV fm3 to reproduce the
Gamow-Teller resonance energy in 208Pb. We leave the other
coupling constants untouched. When we include the tensor
interaction we use the values implied by the Skyrme t and x
parameters; the relations between these parameters and the C’s
are given, e.g., in Ref. [10]. All this is the same prescription
for the time-odd terms that was found practical (without tensor
terms) in Ref. [9].

Figure 8 shows some of the results. Without the tensor
interaction it is possible to roughly reproduce the half-lives
through an appropriate strength for the isoscalar pairing
interaction in Eq. (6) (about 60% of isovector interaction
strength); in the analysis leading to Figs. 6 and 7 we did not
include isoscalar pairing, which has been the most convenient
remedy for many of the QRPA’s deficiencies. Reference [8]
suggests that the tensor interaction can obviate strong isoscalar
pairing. To begin to test this idea, we add the same tensor
terms we used with the SkO functional. There is no particular

justification for this choice other than its successes with SkO
and the lack of any work on tensor interactions in conjunction
with SkO′. Yet, as Figure 8(a) shows, these tensor terms lower
the half-lives in very much the same way as isoscalar pairing.

As mentioned above, however, the simple addition of a
tensor interaction spoils the functional’s ability to reproduce
data. We have compensated for the problem in the time-odd
channel by readjusting Cs

1, but have done nothing to repair
the time-even channel, the original parameters of which
were obtained through careful fits to energies, radii, etc. We
therefore look at what happens when we leave the time-even
part of SkO′ alone, adding tensor terms to the time-odd part
only. To make the changes truly minimal, we allow the tensor
interaction to alter only the two time-odd coupling constants
CF

1 and C∇s
1 that receive no contribution from any other

piece of a typical density-dependent interaction. We again set
C�s = 0, and refit Cs

1 (now to 181 MeV fm3) to reproduce
the 208Pb resonance. Figure 8(a) shows that even these modifi-
cations, which (again) do not alter other predictions, mimic
much of the reduction in half-lives produced by isoscalar
pairing.

Figure 8(b) breaks the decay rates (inverse half-lives) down
into forbidden and allowed parts. The first-forbidden channel
is usually less sensitive to the tensor terms and to isoscalar
pairing than the allowed channel. In the spherical (cadmium)
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FIG. 8. (Color online) (a) Ratio of calculated to experimental
half-lives with the functional SkO′and first-forbidden contributions
included. The bare SkO′ half-lives (solid blue line) are systematically
longer than experiment and can be reduced by introducing either
isoscalar pairing (dashed green line), a full tensor interaction (dashed
red line), or only the time-odd components associated with that
interaction (dotted line). (b) Allowed and first-forbidden contributions
to the decay rates associated with panel a). Left (blue) bars are rates
computed without tensor terms, and right (red) ones the rates with
tensor terms in both time-odd and time-even channels. The darker
upper parts correspond to first-forbidden contributions and the lower
lighter parts to the allowed ones. Values are normalized to the total
rate without tensor terms in each isotope.

isotopes, that is the primary reason the effect of the tensor
terms in Fig. 8(a) is smaller than in Fig. 6, which contains
Gamow-Teller contributions only.

Finally, we note that tensor terms in the Skyrme functionals
are significantly different from those in typical G matrices; to
has the opposite sign. To see what happens with a functional
that more closely resembles a G matrix, we show in Fig. 9
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FIG. 9. (Color online) The effects of a tensor force from a
microscopic G matrix.

lifetimes from the same SkO′ functional but now with tensor
parameters te = 130 MeV fm5, to = 50 MeV fm5 [35] in both
the time-odd and time-even channels and with Cs

1 again
adjusted, now to 148 MeV fm3, to reproduce the GT resonance
peak in 208Pb. Unlike our other choices of tensor interaction,
this one does not consistently shorten half-lives; many of them
are increased instead.

Taken together, our results suggest that the time-odd piece
of the Skyrme functional is much richer than previously
suspected. The time is ripe for a much more careful analysis
of all the time-odd terms. Our PNFAM will allow data from
charge-exchange reactions in deformed nuclei to be included in
fits. A like-particle version would increase the range of usable
data further. Together with modern optimization techniques,
the efficient calculation of linear response should make for a
vast improvement in our ability to describe beta decay and
predict it in important r-process isotopes where measurement
is not possible.

V. CONCLUSIONS

We have adapted the finite amplitude method for the
computation of beta-decay strength functions and rates in
axially-deformed even-even nuclei with modern Skyrme-like
energy-density functionals. While formally equivalent to the
traditional matrix QRPA, the FAM is far more robust and
just as useful as long as the full set of QRPA energies and
transition-matrix elements is not needed.

To demonstrate the pnFAM’s power, we have taken a first
look at the effect of Skyrme’s tensor terms on allowed and
first-forbidden beta decay in open-shell isotopes. We find that
the tensor interaction lowers half-lives in deformed nuclei
much like it does in the spherical nuclei studied in Ref. [8].
Working with the functional SkO′, we are able to roughly
reproduce measured rates in a range of nuclei without strong
isoscalar pairing and without spoiling the predictions of the
functional in even-even systems. It is clearly time to explore
time-odd functionals systematically, and we intend to do so
soon. Finally, beta decay is only one possible application of
the pnFAM. Neutrino scattering, hadronic charge exchange,
and double-beta decay are three others that come quickly to
mind.
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APPENDIX: FIRST-FORBIDDEN BETA DECAY

When forbidden operators contribute non-negligibly to beta
decay, the transition strength Bi in Eq. (22) must be replaced
by a more general integrated shape function,

CJπ = 1

f (E0)

∫ W0

1
dW CJπ (W )F0L0pW (W0 − W )2. (A1)

Six different multipole operators contribute to nonunique
first-forbidden decay:

Ôps0 = λeme

Mn

σ · ∇ τ− , (A2a)

Ôp(K) = λeme �K

Mn

∇K τ− , (A2b)

Ôr (K) = �K

λe

√
4π rY1K (r̂) τ− , (A2c)

and

ÔrsL(K) = (−1)L �K

λe

√
4π r[Y1σ ]LK τ− , (A2d)

where L = 0,1,2. Here Mn = 939.0 MeV/c2 is the nucleon
mass, and λe = �c/(mec

2) = 386.159268 fm is the (reduced)
electron Compton wavelength. All operators and resulting
quantities are normalized to the electron mass so that the
quantity CJπ in Eq. (A1) is dimensionless [21]. The factors

�K arise from the transformation from intrinsic to laboratory
reference frames [36]:

〈LK||ÔL||00〉 = �K〈K|ÔLK |0〉, (A3)

where

�K =
{

1, K = 0,√
2, K > 0.

(A4)

The shape factors for the nonunique forbidden decay are
worked out, e.g., in Ref. [23]. Expressing the squared matrix
elements and the interference terms in terms of residues and
replacing the kinematic parts of integrands by polynomial
expressions that closely approximate them along a portion
of the real axis (see main text), one can write first-forbidden
shape functions in the form

CJπ ≈ 1

2πi

∑
i

∮
C

dω Pi(ω)Ri(J
π ; ω), (A5)

where the Ri are linear combinations of functions S(F ; ω) and
χ (F,G; ω) defined in Eqs. (15) and (19). For Jπ = 0− we have

R1(0−,ω) = − 2
3g2

A(X+S(Ôrs0; ω) + χ (Ôrs0,Ôps0; ω))

(A6a)

and

R2(0−,ω) = g2
A

[(
X2

+ + 1
9

)
S(Ôrs0; ω)

+ S(Ôps0; ω) + 2X+χ (Ôrs0,Ôps0; ω)
]
, (A6b)

for Jπ = 1− we have

R1(1−,ω) = −2

9

[
X+S(Ôr ; ω) − 2g2

AX−S(Ôrs1; ω) + gA

√
2(X+ − X−)χ (Ôr ,Ôrs1; ω)

−
√

3χ (Ôp,Ôr ; ω) − gA

√
6χ (Ôp,Ôrs1; ω)

]
, (A7a)

R2(1−,ω) = S(Ôp; ω) + 1

3
X2

+S(Ôr ; ω) + 2

3
g2

AX2
−S(Ôrs1; ω) − 8

27

(
g2

AS(Ôrs1; ω) + gA√
2
χ (Ôr ,Ôrs1; ω)

)
γ1

+ 1

27

(
S(Ôr ; ω) + 2g2

AS(Ôrs1; ω) + 2
√

2gAχ (Ôr ,Ôrs1; ω)
)

+
√

2

3

(
2gAX−χ (Ôp,Ôrs1; ω) −

√
2X+χ (Ôp,Ôr ; ω) − 2√

3
gAX−X+χ (Ôr ,Ôrs1; ω)

)
, (A7b)

R3(1−,ω) = 4

3

[√
2

3
gAX+χ (Ôr ,Ôrs1; ω) − 2

3
g2

AX−S(Ôrs1; ω) −
√

2

3
gAχ (Ôp,Ôrs1; ω)

]
, (A7c)

R4(1−,ω) = 8

27
g2

AS(Ôrs1; ω), (A7d)

R5(1−,ω) = 1

27

[
2S(Ôr ; ω) + g2

AS(Ôrs1; ω) + 2
√

2gAχ (Ôr ,Ôrs1; ω)
]
, (A7e)

R6(1−,ω) = 1

27

[
2S(Ôr ; ω) + g2

AS(Ôrs1; ω) − 2
√

2gAχ (Ôr ,Ôrs1; ω)
]
, (A7f)
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and finally, for Jπ = 2− have

R5(2−,ω) = R6(2−,ω) = 1
9g2

AS(Ôrs2; ω). (A8)

We have used the shorthand

X± =
(

W0

3
± αZ

2R

)
, (A9)

where α is the fine-structure constant and R is the nuclear
radius. The polynomials Pk(ω) are fitted to the various
integrated kinematical factors so that Pi(ω) ≈ Gi((ωmax −
ω)/(mec

2) + 1), with

Gi(W0) =
∫ W0

1
dW giF0L0p(W0 − W )2 (A10)

in the interval ω ∈ [0,ωmax] (within our contour). Here

g1 = γ1, g2 = W, g3 = W 2,

g4 = W 3, g5 = W (W0 − W )2, and

g6 = λ2W (W 2 − 1),

(A11)

where the function λk is

λk = (k + γk)Fk−1

k(1 + γ1)F0
. (A12)

The polynomial P2 above is the same one that enters the
computation of allowed decay. (We called it fpoly in the main
text.)
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[18] X. Roca-Maza, G. Colò, and H. Sagawa, Phys. Rev. C 86, 031306
(2012).

[19] P. Ring and P. Schuck, The Nuclear Many-Body Problem,
3rd ed. (Springer, Berlin, 2004).

[20] H. Chandra and M. L. Rustgi, Phys. Lett. B 36, 185 (1971).
[21] H. Behrens and W. Bühring, Electron Radial Wave Functions

and Nuclear Beta-decay, International Series of Monographs on
Physics (Oxford University Press, New York, 1982).

[22] H. F. Schopper, Weak Interactions and the Nuclear Beta Decay
(North-Holland, Amsterdam, 1966).

[23] J. Suhonen, Nucl. Phys. A 563, 205 (1993).
[24] J. C. Hardy and I. S. Towner, Phys. Rev. C 71, 055501 (2005).
[25] H. Primakoff and S. P. Rosen, Rep. Prog. Phys. 22, 121 (1959).
[26] J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, and

R. Surman, Phys. Rev. C 60, 014302 (1999).
[27] N. Hinohara, M. Kortelainen, and W. Nazarewicz, Phys. Rev. C

87, 064309 (2013).
[28] N. Hinohara (unpublished).
[29] E. Terán, V. E. Oberacker, and A. S. Umar, Phys. Rev. C 67,

064314 (2003).
[30] D. J. Thouless and J. G. Valatin, Nucl. Phys. 31, 211 (1962).
[31] C. L. Bai, H. Q. Zhang, X. Z. Zhang, F. R. Xu, H. Sagawa, and
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